Parallel Fortran Unit Testing Framework
Installation, Usage, and API

Tom Clune

Software Systems Support Office
Earth Science Division
NASA Goddard Space Flight Center

April 31, 2012

Tom Clune (SSSO) April 31, 2012 1/81

Outline

© Introduction

Tom Clune (SSSO)

pFUnit fact sheet @/

@ History
» original “unfunded” development - 2005
NASA Open Source Agreement (NOSA) - 2006
HEC funding for documentation /tutorial - 2010
SBIR grant to Tech-X to integrate within Eclipse/Photran
Primary interfaces have been stable for years (too few users?)
o Targeted at technical software written in Fortran
» Developed using TDD in (almost) standard Fortan
» Supports testing of parallel software based on MPI
» Extensive support for multidimensional FP arrays
> Parameterized tests
@ "“F2kUnit" - next release, rewrite from scratch in F2003 and OO
> Very extensible
» Core cababilities are complete, but need to integrate various little things

vV vyVvYyy

Tom Clune (SSSO) April 31, 2012 3/81

Projects using pFUnit @/

Development of pFUnit itself (bootstrapping)
New implementation of SMVGear chemistry solver

Large portion of re-engineered DYNAMO (pseudospectral MHD)

Virtual snowflake simulation

> Initial implementation serial
» pFUnit used to develop MPI extension
» pFUnit used to create entirely new multi-lattice version

A couple of small packages in GISS modelE

» hand timers
» Tracer metadata infrastructure

Tom Clune (SSSO) April 31, 2012 4 /81

pFUnit Architecture @/

Tom Clune (SSSO)

Anatomy of a Unit Test

Procedure testFoo()

S —
+

Tom Clune (SSSO)

Outline

© System requirements

Tom Clune (SSSO)

System requirements @/

Unix (Linux, OS X, ...)
GNU make

Fortran 95 compiler with F2003 C-Interoperability extensions
Currently supported compilers:

Intel (ifort)

GNU (gfortran)

NAG (nagfor)

IBM (xIf)

PGI (pgf)

Porting to other compilers should be straightforward.

\4

vVvyVvYyy

@ MPI - optional

Tom Clune (SSSO) April 31, 2012 8 /81

Outline

© Installation

Tom Clune (SSSO)

Installation - obtaining source code @/

pFUnit is maintained in a git repository on sourceforge

e Via git from sourceforge:

% git clone git://pfunit.git.sourceforge.net/gitroot/pfunit/pfunit pFUnit

@ Or use your browser to download nightly snapshot
http://sourceforge.net/projects/pfunit/files/Source/pFUnit.tar.gz/download

% tar —xzf pFUnit.tar.gz

Tom Clune (SSSO) April 31, 2012 11 /81

http://git-scm.com
http://sourceforge.net/projects/pfunit/files/Source/pFUnit.tar.gz/download

Installation - build library and self tests

© Change directory
% cd pFUnit

Tom Clune (SSSO)

Installation - build library and self tests @/

© Change directory
% cd pFUnit

@ Build library and run self tests
% make tests
tests/tests.x

103 run, 0 failed 0.03 seconds

Tom Clune (SSSO) April 31,2012 13 /81

Installation - build library and self tests @/

© Change directory
% cd pFUnit

@ Build library and run self tests
% make tests
tests/tests.x

103 run, 0 failed 0.03 seconds

% make tests MPI=YES
mpirun —np 5 ./ mpi_pFUnit.x

115 run, 0 failed 0.07 seconds

Tom Clune (SSSO) April 31, 2012 13 / 81

Installation - build library and self tests

© Change directory
% cd pFUnit

@ Build library and run self tests
% make tests
tests/tests.x

103 run, 0 failed 0.03 seconds

% make tests MPI=YES

mpirun —np 5 ./ mpi_pFUnit.x

115 run, 0 failed 0.07 seconds

© Override default compiler
% make tests F90_VENDOR=<vendor >

Table: Supported compilers

[F90_Vendor [Compiler |
Intel (default) | ifort
NAG nagfor
IBM xIf
PGl pgfa0
GNU/ gfortran
Gfortran

Tom Clune (SSSO)

April 31, 2012 13 / 81

Installation - final step @/

@ Choose a location (outside pfunit source) in which to install libraries,
include files, and Fortran modules.

@ Set the PFUNIT environment variable to the chosen location
You will want a separate directory for MPI and serial builds of pFUnit.

bash % export PFUNIT=<path>
csh,tcsh % setenv PFUNIT <path>

© Use make to perform installation step
% make install INSTALL_DIR=SPFUNIT

If installation was successful then you should see the following
subdirectiories:

% |s $PFUNIT
bin include lib mod

Tom Clune (SSSO) April 31, 2012 15 / 81

Outline

@ Documentation

Tom Clune (SSSO)

@

@ These slides ...

@ User guide - distributed with source (IATEXdocument)
o API reference manual
» http:

//sourceforge.net/projects/pfunit/files/Documentation
» PDF and/or HTML

Tom Clune (SSSO) April 31, 2012 17 / 81

http://sourceforge.net/projects/pfunit/files/Documentation
http://sourceforge.net/projects/pfunit/files/Documentation

@

@ These slides ...

@ User guide - distributed with source (IATEXdocument)
o API reference manual
» http:

//sourceforge.net/projects/pfunit/files/Documentation
» PDF and/or HTML

Note that documentation is not being actively maintained.

Tom Clune (SSSO) April 31, 2012 17 / 81

http://sourceforge.net/projects/pfunit/files/Documentation
http://sourceforge.net/projects/pfunit/files/Documentation

Outline @/

O API

@ Assertions and Exceptions
@ API - BaseAddress and ProcedurePointer
@ API - TestCase

Tom Clune (SSSO) April 31, 2012 18 / 81

API - Module pFUnit @/

The public interfaces to pFUnit are re-exported through a module called
“pFUnit".

Tom Clune (SSSO) April 31,2012 20/ 81

API - Module pFUnit @/

The public interfaces to pFUnit are re-exported through a module called
“pFUnit".

Thus to access pFUnit data types and procedures, one merely needs to add
a F90 USE statement at the beginning of a module/subroutine/function:

use pFUnit

Tom Clune (SSSO) April 31, 2012 20 / 81

API: Assertions

Tom Clune (SSSO)

API: Assertions

@ Caution - not the same as C-style ASSERT macro

Tom Clune (SSSO)

API: Assertions @/

@ Caution - not the same as C-style ASSERT macro

@ Unit tests specify behavioral costraints with assertions.

Tom Clune (SSSO) April 31, 2012 21 /81

API: Assertions @

@ Caution - not the same as C-style ASSERT macro
@ Unit tests specify behavioral costraints with assertions.

@ Test succeeds only if all contained assertions are valid

Tom Clune (SSSO) April 31,2012 21 /81

API: Assertions @

@ Caution - not the same as C-style ASSERT macro
@ Unit tests specify behavioral costraints with assertions.

@ Test succeeds only if all contained assertions are valid
@ When an assertion fails

» pFUnit logs the test as failing
» pFUnit accumulates list of failure messages for reporting

Tom Clune (SSSO) April 31, 2012 21 /81

API: Assertions @/

@ Caution - not the same as C-style ASSERT macro
@ Unit tests specify behavioral costraints with assertions.

@ Test succeeds only if all contained assertions are valid
@ When an assertion fails

» pFUnit logs the test as failing

» pFUnit accumulates list of failure messages for reporting
@ Support for all intrinsic data types:

Logical true, false
Integer equal
Real equal, within tolerance, (less than, ...)
String same, optionally ignore differences in white space

Tom Clune (SSSO) April 31, 2012 21 /81

API: Assertions @/

@ Caution - not the same as C-style ASSERT macro
@ Unit tests specify behavioral costraints with assertions.

@ Test succeeds only if all contained assertions are valid
@ When an assertion fails

» pFUnit logs the test as failing
» pFUnit accumulates list of failure messages for reporting

@ Support for all intrinsic data types:

Logical true, false

Integer equal

Real equal, within tolerance, (less than, ...)

String same, optionally ignore differences in white space

@ Support for arrays: (Real - 5 dimensions, Integer - 1 dimension)
» Can compare against scalar or conformable array
» Reports first location that differs
» Uses L, norm, but has hooks for other norms (unused)
» Will be adding interface for relative error

Tom Clune (SSSO) April 31, 2012 21 /81

API: Assertions (cont'd) @

The most common form of assertion is:

call assertEqual(<expected >, <found>, <message>)

@ Test fails if found is diferrent than expected
@ Overloaded for integer, real (single and double), and string

@ Overloaded for multidimensional arrays

Tom Clune (SSSO) April 31, 2012 23 /81

API: Assertions (cont'd) @

The most common form of assertion is:

call assertEqual(<expected >, <found>, <message>)

@ Test fails if found is diferrent than expected
@ Overloaded for integer, real (single and double), and string

@ Overloaded for multidimensional arrays

@ Example:

call assertEqual (120, factorial(5), 'factorial broken')

Tom Clune (SSSO) April 31, 2012 23 /81

API: Assertions (cont'd) @/

The most common form of assertion is:

call assertEqual(<expected >, <found>, <message>)

@ Test fails if found is diferrent than expected
@ Overloaded for integer, real (single and double), and string

@ Overloaded for multidimensional arrays

@ Example:

call assertEqual (120, factorial(5), 'factorial broken')

Output from a failed assertion looks like:

Failure in top::testFactorial — Integer scalar assertion failed:
factorial broken
Expected: 120
but found: 24

Tom Clune (SSSO) April 31, 2012 23 /81

API: Assertions (cont'd) @

@ assertEqual(expected, found, tolerance, message)

» Throws exception if difference is larger than tolerance
» Example:

call assertEqual(totalMass, sum(mass(:,:,:)), 0.0001)

@ assertTrue(test, message)

» Throws exception if logical test is false
» Example:

call assertTrue(pressure < 1100., 'pressure limit ')

@ assertFalse (test, message)
» Throws exception if logical test is true
@ Note message argument is always optional
» Appends informative text to default text

Tom Clune (SSSO) April 31, 2012 25 /81

API: Assertions (cont'd)

With only the Assertion module, developers can create a variety of
complete unit tests. E.g.,

subroutine testSumFromltoN ()
use pFUnit

call assertEqual (10, sumFromltoN (4))
end subroutine testSumFromltoN

Tom Clune (SSSO) April 31, 2012 27 /81

API: Assertions (cont'd) @/
With only the Assertion module, developers can create a variety of

complete unit tests. E.g.,

subroutine testSumFromltoN ()
use pFUnit

call assertEqual (10, sumFromltoN (4))
end subroutine testSumFromltoN

or
subroutine testComputeDerivative ()
use pFUnit
real :: u(3)
real :: dudx(2)
real :: dx = 1.

u(:,1) = [1.,2.,2.,0.]
call computeDerivative(u, dx, dudx)

call assertEqual([1.,0.,—2.], dudx)

end subroutine testComputeDerivative

Tom Clune (SSSO) April 31, 2012 27 /81

API: Exceptions @/

@ Unit tests signal failed assertions by “throwing” an exception.

Tom Clune (SSSO) April 31, 2012 28 / 81

API: Exceptions @

@ Unit tests signal failed assertions by “throwing” an exception.

@ The framework “catches” exceptions

> Test is recorded as failing
» Failure messages are aggregated
» Framework continues to next test

28 / 81

Tom Clune (SSSO) April 31, 2012

API: Exceptions @/

@ Unit tests signal failed assertions by “throwing” an exception.

@ The framework “catches” exceptions

> Test is recorded as failing
» Failure messages are aggregated
» Framework continues to next test

@ Problem: Fortran lacks native support for exceptions

28 / 81

Tom Clune (SSSO) April 31, 2012

API: Exceptions @/

@ Unit tests signal failed assertions by “throwing” an exception.

@ The framework “catches” exceptions

> Test is recorded as failing
» Failure messages are aggregated
» Framework continues to next test

@ Problem: Fortran lacks native support for exceptions

@ Kludge: Global stack of Exception_type variables

28 / 81

Tom Clune (SSSO) April 31, 2012

API: Exceptions @/

@ Unit tests signal failed assertions by “throwing” an exception.

@ The framework “catches” exceptions

> Test is recorded as failing
» Failure messages are aggregated
» Framework continues to next test

@ Problem: Fortran lacks native support for exceptions

@ Kludge: Global stack of Exception_type variables

o Limitations:

28 / 81

Tom Clune (SSSO) April 31, 2012

API: Exceptions @/

@ Unit tests signal failed assertions by “throwing” an exception.

@ The framework “catches” exceptions

> Test is recorded as failing
» Failure messages are aggregated
» Framework continues to next test

@ Problem: Fortran lacks native support for exceptions

o Kludge: Global stack of Exception_type variables

o Limitations:
» Requires manual return to caller

28 / 81

Tom Clune (SSSO) April 31, 2012

API: Exceptions @/

@ Unit tests signal failed assertions by “throwing” an exception.

@ The framework “catches” exceptions

> Test is recorded as failing
» Failure messages are aggregated
» Framework continues to next test

@ Problem: Fortran lacks native support for exceptions
o Kludge: Global stack of Exception_type variables

o Limitations:
» Requires manual return to caller
» Errors (as opposed to failures) crash the framework

Tom Clune (SSSO) April 31, 2012

28 / 81

API: Exceptions @/

@ Unit tests signal failed assertions by “throwing” an exception.

@ The framework “catches” exceptions

> Test is recorded as failing
» Failure messages are aggregated
» Framework continues to next test

@ Problem: Fortran lacks native support for exceptions
o Kludge: Global stack of Exception_type variables

o Limitations:
» Requires manual return to caller
» Errors (as opposed to failures) crash the framework

» Obtaining file & line number of failure is more difficult

Tom Clune (SSSO) April 31, 2012

28 / 81

API: Exception Class (cont'd)

Primary methods:

o throw() Pushes an exception onto the global stack.

type (Exception_type) :: myException

myException = Exception (' Another exception’)

call throw(myException)

Useful shortcut for usual case:

call throw('This is an exception ')

Tom Clune (SSSO)

April 31, 2012

30 / 81

API: Exception Class (cont'd) @/
Primary methods:

o throw() Pushes an exception onto the global stack.
type (Exception_type) :: myException

myException = Exception (' Another exception’)
call throw(myException)

Useful shortcut for usual case:

call throw('This is an exception ')

@ catch() Returns true if specified exception has been thrown

» Default - delete exception from global stack
» Override with optional argument preserve=.true.
if (catch()) then ! true if global stack is non—empty

if (catch(’This is an exception’')) then
if (catch(anException)) then

Tom Clune (SSSO) April 31, 2012 30/ 81

API: Exception Class (cont'd) @/

Primary methods:
o throw() Pushes an exception onto the global stack.
type (Exception_type) :: myException

myException = Exception (' Another exception’)
call throw(myException)

Useful shortcut for usual case:

call throw('This is an exception ')

@ catch() Returns true if specified exception has been thrown

» Default - delete exception from global stack
» Override with optional argument preserve=.true.
if (catch()) then ! true if global stack is non—empty

if (catch(’This is an exception’')) then
if (catch(anException)) then

e catchAny() returns top exception on the stack

anException = catchAny ()

Tom Clune (SSSO) April 31, 2012 30/ 81

API: Exception Class (cont'd) @

Additional methods - should rarely be needed.
o clearAll() - empty the stack
@ == - compare two exceptions
e numExceptions()
o getMessage - return string from inside derived type

Tom Clune (SSSO) April 31, 2012 32 /81

API: BaseAddress and ProcedurePointer @/

BaseAddress_type encapsulates a base address for a data entity

Allows framework to manipulate user-defined data structures
Only needed for test fixtures - discussed elsewhere
Current implementation uses new F2003 C-interoperability

Original implementation used semi-portable hack

Could probably now be replaced by F2003 unlimited polymorphic
entities

Tom Clune (SSSO) April 31, 2012 34 /81

API: BaseAddress and ProcedurePointer @/

BaseAddress_type encapsulates a base address for a data entity

@ Allows framework to manipulate user-defined data structures

Only needed for test fixtures - discussed elsewhere
Current implementation uses new F2003 C-interoperability

Original implementation used semi-portable hack

Could probably now be replaced by F2003 unlimited polymorphic
entities

ProcedurePointer_type encapsulates a base address for a procedure
@ Allows framework to aggregate user-defined test procedures
@ Uses F2003 C-interoperability
@ Could probably now be replaced by F2003 procedure pointers

Tom Clune (SSSO) April 31, 2012 34 /81

API: TestResult class @

TestResult_type: derived type that accumulates findings from running a
sequence of tests.

@ How many tests have run
@ How many tests have failed
@ Accumulate report of failure messages

@ Wall clock time passed

Tom Clune (SSSO) April 31, 2012 36 / 81

API: TestResult (cont’d) @/

@ newTestResult() - generate a pristine report object
@ summary(this) - return 1 line string summarizing results

103 run, 2 failed 0.12 seconds

@ generateReport(this) - return a Report_type that contains a list of all failure
messages; prepends with test/suite hierarchy
@ setReportMode(this, mode) - control logging
» MODE_USE_BUFFER (default)
* output failure messages to internal buffer
» MODE_USE_STDOUT
* track progress (emit ".", 'x’, or 'm’) for each test

» MODE_USE_LOGFILE
* track progress by testname in hidden “.pFUnitLog" file

Tom Clune (SSSO) April 31, 2012 38 /81

Advanced Topic - Test Fixtures @/

Often, several tests require identical initialization steps for a group of input
variables.
A test fixture:

@ Provides a container for the shared input variables

@ Provides a setUp() method to allocate resources and/or initialize
elements

@ Provides a tearDown() method to deallocate resources

Tom Clune (SSSO) April 31, 2012 40 / 81

Test Fixtures in pFUnit @/

Fixtures in pFUnit are a bit of a kludge due to lack of polymorphism in
F95.
Two “obvious” approaches:
© Use module variables and/or derived types that are accessed by test
procedures

Pro easy to implement and code
Con somewhant easy to accidentally share data between tests

@ Fake polymorphism by passing around a BaseAddress

Pro Framework provides fresh fixture for each test method
Con Requires a wrapper to handle fixture dereference
Con Wrapper complicates makefile

pFUnit supports both approaches. Focus and documentation has been on
the latter.

Tom Clune (SSSO) April 31, 2012 42 /81

pFUnit simple fixture

module myTestModule
use pfunit

private

public :: setUp, tearDown, testl

real , allocatable :: buffer(:) ! the fixture
contains

subroutine setUp ()

integer :: i
allocate (buffer (10))
buffer = [(i,i=1,10)]

end subroutine setUp

subroutine tearDown ()
deallocate (buffer)
end subroutine tearDown

subroutine testl ()
call assertEqual (55, sum(buffer))
end subroutine testl

end module myTestModule

Tom Clune (SSSO)

April 31, 2012

44 / 81

pFunit Fixture with Derived Type @/

module myTestModule
use pfunit

private
public :: fixture , setUp, tearDown, testl
type fixture
real , allocatable :: buffer (:)
end type
contains
subroutine setUp(this)
type (fixture), intent(inout) :: this
allocate (this%buffer (10))
this%buffer = [(i,i=1,10)]

end subroutine setUp

subroutine tearDown(this)
type (fixture), intent(inout) :: this
deallocate(this%buffer)

end subroutine tearDown

subroutine testl (this)
type (fixture), intent(in) :: this
call assertEqual (55, sum(buffer))
end subroutine testl
end module myTestModule

Tom Clune (SSSO) April 31, 2012 46 / 81

pFunit Fixture Wrapper @/

module myTestModule_wrap
use myTestModule, only: fixture => fixture_private

use myTestModule, only: setUp => setUp_private
use myTestModule, only: tearDown => tearDown_private

type fixture
type (fixture_private) :: user_fixture
type (fixture), pointer self_reference

end type

I Continue next screen

Tom Clune (SSSO) April 31, 2012 48 / 81

contains

subroutine setUp(this)

type (fixture) :: this

call setUp_private(this%user_fixture)
end subroutine setUp

subroutine tearDown(this)

type (fixture) :: this

call tearDown_private(this%user_fixture)
end subroutine tearDown

subroutine testl(this)

type (fixture) :: this

call testl_private(this%user_fixture)
end subroutine testl

end module myTestModule_wrap

Tom Clune (SSSO) April 31, 2012 50 / 81

API - TestCase class @/

TestMethod_type derived type that binds a procedure pointer with a
meaningful name (string)

@ Required because Fortran lacks reflection/introspection

@ Allows framework to report which test ran/failed

@ Allows framework to select which tests to run
TestCase_type derived type that contains

o List of related test methods (usually just 1)

@ Procedure pointers for setUp() and tearDown()

Tom Clune (SSSO) April 31, 2012 52 /81

API - TestCase constructors (overloaded) @

test = TestCase() - used internally
test = TestCase(setUp, tearDown) - used internally fixture
test = TestCase(name, procedure) - 1 Step construction

test = TestCase(setUp, tearDown, passFixture) - “kludge” fixture

test = TestCase(setup, teardown, name, procedure) - convenience

Methods are accumulated via

call addTestMethod(this, name, procedure)

Tom Clune (SSSO) April 31, 2012 54 / 81

API - TestCase::run() @

call run(this, aTestResult) performs the following steps for each method
O Call testStarted()
@ Allocate fixture if any
@ Call setUp() if any
@ Check for exceptions

@ If good so far

@ Run the test method
@ Check for exceptions

@ call tearDown() if any

Tom Clune (SSSO) April 31, 2012 56 / 81

API - MpiTestCase @/

An MPI test case runs a test procedure on a group of MPI processes
Implementation considerations:

@ Must allow for tests using varying number of processes
@ Need mechanism to specify number of processes to use
@ Most MPI implementations are not reentrant

@ pFUnit self tests need to be able to run MPI test within a serial test

@ Client - Server

@ Persistent server
@ Relaunch server for each test

@ Use MPI subcommunicators within executable

® With MPI_spawn()
® Max NPES determined at launch

Tom Clune (SSSO) April 31, 2012 58 / 81

API - MpiTestCase Client-Server?

@ Serial client interacts with MPI-based Server
@ Server can be persistent or relaunched for each test

Serial Driver

Pro Pure - MPI can be relaunched for each test
Pro Can support time limits

Con 1 second overhead per test - gets expensive
Con Complex/fragile mechanism

Tom Clune (SSSO)

April 31, 2012

60 / 81

API - MpiTestCase Subcommunicator?

Pro Low overhead per test
Pro Relatively simple driver mechanism
Con Cannot support time limits (Mpi_abort() issues)

Root
Create
Subcommunicator
Active
Run test processes
Gather
Exceptions

Barrier

Tom Clune (SSSO)

April 31, 2012

62 / 81

API - MpiTestCase (cont'd) @

Usage is very similar to the regular TestCase, except:
@ Constructor - requires extra argument numProcesses

MpiTestCase(name, method, numProcesses)

@ Test method requires extra “info” argument (intent(in))

subroutine myMPltest(info)
type (Testlnfo_type), intent(in) :: info

Tom Clune (SSSO) April 31, 2012 64 / 81

API - TestInfo @/

The Testinfo_type derived type:

@ Passes the mpiCommunicator to be used by the test
NO MPI_COMM_WORLD

comm = mpiCommunicator(info)

@ Convenient access to other MPI values that are usually needed for
setting up an MPI test.

npes = numProcesses(info)
rank = processRank(info)

@ Several other procedures used internally by pFUnit

if (amRoot(info))
if (amActive(info)) ... ! participate in test
call barrier(info)

Tom Clune (SSSO) April 31, 2012 66 / 81

TestSuite

The TestSuite_type derived type is a container for organizing test cases.
o E.g. fast tests that are always run
@ Slow tests run overnight, or weekend
@ Personal tests vs tests for full application
The primary interfaces are
@ Constructors
mySuite = TestSuite('mySuiteName') ! empty
mySuite = TestSuite ('mySuiteName ', suites) ! group of pre—existing
o Add a test
call add(mySuite, test)

Where test is any of:

> TestCase_type
> MpiTestCase_type
> TestSuite_type

> ParameterizedTestCase_type

Tom Clune (SSSO) April 31, 2012 68 / 81

Outline

@ Driving pFUnit

Tom Clune (SSSO)

A simple driver @/

program TestDriver
use pFUnit
use TestMyModule_mod

type (TestSuite_type) :: suite
type (TestResult_type) :: result
character (len=100) i1 summary_statement

call pFUnit_init ()

! Build suite from test procedures:

suite = TestSuite('My test subroutines ')

call add(suite , TestCaselStep('testMySub ', testMySub))
call add(suite , TestCaselStep(' anotherTest’',6 anotherTest))

result = newTestResult (mode=MODE_USE_STDOUT)
call run(suite, result)

summary_statement = summary(result)
print*, trim(summary_statement)

call clean(result)

call clean(suite)

call pFUnit_finalize ()
end program TestDriver

Tom Clune (SSSO) April 31, 2012 71/ 81

Maintaining the List of Tests @/

3 choices:
@ Manual

» Tedious
» Error prone - failing test never gets called

@ Automation - use preprocessing to find test cases

» Requires a convention for test names
» Current mechanism is a bit fragile

@ DSO'’s - not actively supported at this time

» Developer must create DSO for tests and application
» No mechanism for spcefying number of MPI processors

Tom Clune (SSSO) April 31, 2012 72 /81

Automated assembly of tests @/

pFUnit includes an automation mechanism - users my wish to improve it.
@ Separate directory (or directories) of tests
@ Tests are all module procedures
@ Tests must all start with the string “test...”

More details

@ Each module containing tests is wrapped by an automatically
generated module which bundles them into a suite.

@ MPI test suites are indicated with s+ mpi test cases xxx on the 1st line

@ A skeleton driver has a master test suite that includes a suite from
each of the test modules.

@ Developer should have
include $PFUNIT/include/pFUnit. makefile

in their makefile

Tom Clune (SSSO) April 31, 2012 74 / 81

Outline

@ F2kUnit

Tom Clune (SSSO)

F2kUnit - next release of pFUnit @/

@ Heavily leverages OO features of Fortran 2003
o Complete rewrite from scratch - following design of JUnit
@ Superior extensibility to be extended through OO
> TestListeners - alternate reporting; e.g., Eclipse Photran
» TestRunners - customize means to select tests
@ Basic implementation complete - lacks many bells and whistles
@ Upgrade from current release should be relatively easy

Tom Clune (SSSO) April 31, 2012 76 / 81

Outline

© Exercises

Tom Clune (SSSO)

Exercises @/

You will be attempting 3 exercises that use pFUnit and TDD.
https://modelingguru.nasa.gov/docs/D0C-2222

Each exercise contains a README file with instructions, and is divided
into multiple steps. If you get stuck on one step, the solution is the

starting point for the next step. E.g. the code in 1-B is the solution for
the exercise in 1-A.

Please do not hesitate to ask questions.

Tom Clune (SSSO) April 31, 2012 79 / 81

https://modelingguru.nasa.gov/docs/DOC-2222

@

The provided Makefile's are designed to work with the Intel compiler.
Exercises 1 and 3 should be done with a serial build of pFUnit, and
exercise 2 should be with a parallel build.

@ Exercise 1 is intended to be very simple to allow you to focus on the
pFUnit interfaces.

@ Exercise 2 uses MPI. Attendees that are not familiar with MPI are
encouraged to work with a partner or to proceed to Exercise 3

» On Janus we recommend:

use NCAR—Parallel—Intel

@ Exercise 3 builds upon the interpolation example from the morning
session.

Tom Clune (SSSO) April 31, 2012 81 /81

	Introduction
	System requirements
	Installation
	Documentation
	API
	Assertions and Exceptions
	API - BaseAddress and ProcedurePointer
	API - TestCase

	Driving pFUnit
	F2kUnit
	Exercises

